Function Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z
C
 CascadetrainOnData
 CascadetrainOnFile
 ClearScalingParams
 Connection
 CreateTrainFromCallback
D
 DescaleInput
 DescaleOutput
 DescaleTrain
 DisableSeedRand
 Dispose
E
 EnableSeedRand
F
 FannFile, FANNCSharp.FannFile
G
 Get, ArrayAccessor
 GetActivationFunction
 GetActivationSteepness
 GetEnumerator
 GetTrainInput
 GetTrainOutput
I
 InitWeights
M
 MergeTrainData
 MoveNext, FANNCSharp.AccessorEnumerator
public void CascadetrainOnData(TrainingData data,
uint maxNeurons,
uint neuronsBetweenReports,
float desiredError)
Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
public void CascadetrainOnData(TrainingData data,
uint maxNeurons,
uint neuronsBetweenReports,
float desiredError)
Trains on an entire dataset, for a period of time using the Cascade2 training algorithm.
public void CascadetrainOnFile(string filename,
uint maxNeurons,
uint neuronsBetweenReports,
float desiredError)
Does the same as CascadetrainOnData, but reads the training data directly from a file.
public void CascadetrainOnFile(string filename,
uint maxNeurons,
uint neuronsBetweenReports,
float desiredError)
Does the same as CascadetrainOnData, but reads the training data directly from a file.
public bool ClearScalingParams()
Clears scaling parameters.
public bool ClearScalingParams()
Clears scaling parameters.
public Connection(uint fromNeuron,
uint toNeuron,
double weight)
Creates a connection with the specified parameters Parameters: fromNeuron - Unique number used to identify source neuron toNeuron - Unique number used to identify destination neuron weight - The numerical value of the weight Example:
public Connection(uint fromNeuron,
uint toNeuron,
int weight)
Creates a connection with the specified parameters Parameters: fromNeuron - Unique number used to identify source neuron toNeuron - Unique number used to identify destination neuron weight - The numerical value of the weight Example:
public Connection(uint fromNeuron,
uint toNeuron,
float weight)
Creates a connection with the specified parameters Parameters: fromNeuron - Unique number used to identify source neuron toNeuron - Unique number used to identify destination neuron weight - The numerical value of the weight Example:
public void CreateTrainFromCallback(uint dataCount,
uint inputCount,
uint outputCount,
DataCreateCallback callback)
Creates the training data from a user supplied function.
public void CreateTrainFromCallback(uint dataCount,
uint inputCount,
uint outputCount,
DataCreateCallback callback)
Creates the training data from a user supplied function.
public void CreateTrainFromCallback(uint dataCount,
uint inputCount,
uint outputCount,
DataCreateCallback callback)
Creates the training data from a user supplied function.
Scale data in input vector after get it from ann based on previously calculated parameters.
public void DescaleInput(float[] input)
Scale data in input vector after get it from ann based on previously calculated parameters.
public void DescaleOutput(double[] output)
Scale data in output vector after get it from ann based on previously calculated parameters.
public void DescaleOutput(float[] output)
Scale data in output vector after get it from ann based on previously calculated parameters.
public void DescaleTrain(TrainingData data)
Descale input and output data based on previously calculated parameters.
public void DescaleTrain(TrainingData data)
Descale input and output data based on previously calculated parameters.
public void DisableSeedRand()
Disables the automatic random generator seeding that happens in FANN.
public void DisableSeedRand()
Disables the automatic random generator seeding that happens in FANN.
public void DisableSeedRand()
Disables the automatic random generator seeding that happens in FANN.
Destructs the accessor.
Destructs the accessor.
public void Dispose()
Disposes the enumerator
public void Dispose()
Destructs the connection.
public void Dispose()
Destructs the entire network.
public void Dispose()
Disposes of the training data.
public void Dispose()
Closes the file
public void Dispose()
Destructs the connection.
public void Dispose()
Destructs the entire network.
public void Dispose()
Disposes of the training data.
public void Dispose()
Destructs the connection.
public void Dispose()
Destructs the entire network.
public void Dispose()
Disposes of the training data.
public void EnableSeedRand()
Enables the automatic random generator seeding that happens in FANN.
public void EnableSeedRand()
Enables the automatic random generator seeding that happens in FANN.
public void EnableSeedRand()
Enables the automatic random generator seeding that happens in FANN.
public FannFile(string filename,
string mode)
Encapsulates a C FILE pointer
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public double GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public int GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public float GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
Returns an enumerator that can enumerate over the collection of DataAccessors
Returns an enumerator that can enumerate over the collection of ints
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public void MergeTrainData(TrainingData data)
Merges the data into the data contained in the TrainingData.
public void MergeTrainData(TrainingData data)
Merges the data into the data contained in the TrainingData.
public void MergeTrainData(TrainingData data)
Merges the data into the data contained in the TrainingData.
public bool MoveNext()
Moves the internal reference to the next item in the collection
Close