Function Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z
N
 NeuralNet
P
 PrintConnections
 PrintError
 PrintParameters
R
 RandomizeWeights
 ReadTrainFromFile
 Reset, FANNCSharp.AccessorEnumerator
 ResetErrno
 ResetErrstr
 ResetMSE
 Run
public NeuralNet(NeuralNet other)
Creates a copy the other NeuralNet.
public NeuralNet(NeuralNet other)
Creates a copy the other NeuralNet.
public NeuralNet(NeuralNet other)
Creates a copy the other NeuralNet.
public void PrintConnections()
Will print the connections of the network in a compact matrix, for easy viewing of the internals of the network.
public void PrintConnections()
Will print the connections of the network in a compact matrix, for easy viewing of the internals of the network.
public void PrintConnections()
Will print the connections of the network in a compact matrix, for easy viewing of the internals of the network.
public void PrintError()
Prints the last error to Console.Error.
public void PrintError()
Prints the last error to Console.Error.
public void PrintError()
Prints the last error to Console.Error.
public void PrintParameters()
Prints all of the parameters and options of the neural network
public void PrintParameters()
Prints all of the parameters and options of the neural network
public void PrintParameters()
Prints all of the parameters and options of the neural network
public void RandomizeWeights(double minWeight,
double maxWeight)
Give each connection a random weight between minWeight and maxWeight
public void RandomizeWeights(int minWeight,
int maxWeight)
Give each connection a random weight between minWeight and maxWeight
public void RandomizeWeights(float minWeight,
float maxWeight)
Give each connection a random weight between minWeight and maxWeight
public bool ReadTrainFromFile(string filename)
Reads a file that stores training data.
public bool ReadTrainFromFile(string filename)
Reads a file that stores training data.
public bool ReadTrainFromFile(string filename)
Reads a file that stores training data.
public void Reset()
Resets the internal reference to the first item in the collection
public void ResetErrno()
Resets the last error number.
public void ResetErrno()
Resets the last error number.
public void ResetErrno()
Resets the last error number.
public void ResetErrstr()
Resets the last error string.
public void ResetErrstr()
Resets the last error string.
public void ResetErrstr()
Resets the last error string.
public void ResetMSE()
Resets the mean square error from the network.
public void ResetMSE()
Resets the mean square error from the network.
public void ResetMSE()
Resets the mean square error from the network.
public double[] Run(double[] input)
Will run input through the neural network, returning an array of outputs, the number of which being equal to the number of neurons in the output layer.
public int[] Run(int[] input)
Will run input through the neural network, returning an array of outputs, the number of which being equal to the number of neurons in the output layer.
public float[] Run(float[] input)
Will run input through the neural network, returning an array of outputs, the number of which being equal to the number of neurons in the output layer.
Close