Save the entire network to a configuration file.
public bool Save( string file )
Save the entire network to a configuration file.
public bool Save( string file )
Save the entire network to a configuration file.
public bool Save( string file )
Saves the entire network to a configuration file.
public int SaveToFixed( string file )
Saves the entire network to a configuration file.
public int SaveToFixed( string file )
Saves the entire network to a configuration file.
public int SaveToFixed( string file )
Save the training structure to a file, with the format as specified in ReadTrainFromFile
public bool SaveTrain( string filename )
Save the training structure to a file, with the format as specified in ReadTrainFromFile
public bool SaveTrain( string filename )
Save the training structure to a file, with the format as specified in ReadTrainFromFile
public bool SaveTrain( string filename )
Saves the training structure to a fixed point data file.
public bool SaveTrainToFixed( string filename, uint decimalPoint )
Saves the training structure to a fixed point data file.
public bool SaveTrainToFixed( string filename, uint decimalPoint )
Saves the training structure to a fixed point data file.
public bool SaveTrainToFixed( string filename, uint decimalPoint )
Scale data in input vector before feed it to ann based on previously calculated parameters.
public void ScaleInput( DataAccessor input )
Scale data in input vector before feed it to ann based on previously calculated parameters.
public void ScaleInput( DataAccessor input )
Scales the inputs in the training data to the specified range.
public void ScaleInputTrainData( double new_min, double new_max )
Scales the inputs in the training data to the specified range.
public void ScaleInputTrainData( int new_min, int new_max )
Scales the inputs in the training data to the specified range.
public void ScaleInputTrainData( float new_min, float new_max )
Scale data in output vector before feed it to ann based on previously calculated parameters.
public void ScaleOutput( DataAccessor output )
Scale data in output vector before feed it to ann based on previously calculated parameters.
public void ScaleOutput( DataAccessor output )
Scales the outputs in the training data to the specified range.
public void ScaleOutputTrainData( double new_min, double new_max )
Scales the outputs in the training data to the specified range.
public void ScaleOutputTrainData( int new_min, int new_max )
Scales the outputs in the training data to the specified range.
public void ScaleOutputTrainData( float new_min, float new_max )
Scale input and output data based on previously calculated parameters.
public void ScaleTrain( TrainingData data )
Scale input and output data based on previously calculated parameters.
public void ScaleTrain( TrainingData data )
Scales the inputs and outputs in the training data to the specified range.
public void ScaleTrainData( double new_min, double new_max )
Scales the inputs and outputs in the training data to the specified range.
public void ScaleTrainData( int new_min, int new_max )
Scales the inputs and outputs in the training data to the specified range.
public void ScaleTrainData( float new_min, float new_max )
Set the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationFunction( ActivationFunction function, int layer, int neuron )
Set the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationFunction( ActivationFunction function, int layer, int neuron )
Set the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationFunction( ActivationFunction function, int layer, int neuron )
Set the activation function for all the neurons in the layer number layer, counting the input layer as layer 0.
public void SetActivationFunctionLayer( ActivationFunction function, int layer )
Set the activation function for all the neurons in the layer number layer, counting the input layer as layer 0.
public void SetActivationFunctionLayer( ActivationFunction function, int layer )
Set the activation function for all the neurons in the layer number layer, counting the input layer as layer 0.
public void SetActivationFunctionLayer( ActivationFunction function, int layer )
Set the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepness( double steepness, int layer, int neuron )
Set the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepness( int steepness, int layer, int neuron )
Set the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepness( float steepness, int layer, int neuron )
Set the activation steepness all of the neurons in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepnessLayer( double steepness, int layer )
Set the activation steepness all of the neurons in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepnessLayer( int steepness, int layer )
Set the activation steepness all of the neurons in layer number layer, counting the input layer as layer 0.
public void SetActivationSteepnessLayer( float steepness, int layer )
Sets the callback function for use during training.
public void SetCallback( TrainingCallback callback, Object userData )
Sets the callback function for use during training.
public void SetCallback( TrainingCallback callback, Object userData )
Calculate scaling parameters for future use based on training data.
public bool SetInputScalingParams( TrainingData data, float newInputMin, float newInputMax )
Calculate scaling parameters for future use based on training data.
public bool SetInputScalingParams( TrainingData data, float newInputMin, float newInputMax )
Calculate scaling parameters for future use based on training data.
public bool SetOutputScalingParams( TrainingData data, float newOutputMin, float newOutputMax )
Calculate scaling parameters for future use based on training data.
public bool SetOutputScalingParams( TrainingData data, float newOutputMin, float newOutputMax )
Calculate scaling parameters for future use based on training data.
public bool SetScalingParams( TrainingData data, float newInputMin, float newInputMax, float newOutputMin, float newOutputMax )
Calculate scaling parameters for future use based on training data.
public bool SetScalingParams( TrainingData data, float newInputMin, float newInputMax, float newOutputMin, float newOutputMax )
Set the training data to the input and output data provided.
public void SetTrainData( double[][] input, double[][] output )
Set the training data to the input and output data provided.
public void SetTrainData( int[][] input, int[][] output )
Set the training data to the input and output data provided.
public void SetTrainData( float[][] input, float[][] output )
Set a connection in the network.
public void SetWeight( uint fromNeuron, uint toNeuron, double weight )
Set a connection in the network.
public void SetWeight( uint fromNeuron, uint toNeuron, int weight )
Set a connection in the network.
public void SetWeight( uint fromNeuron, uint toNeuron, float weight )
Shuffles training data, randomizing the order.
public void ShuffleTrainData()
Shuffles training data, randomizing the order.
public void ShuffleTrainData()
Shuffles training data, randomizing the order.
public void ShuffleTrainData()
Changes the training data to a subset, starting at position pos and length elements forward.
public void SubsetTrainData( uint pos, uint length )
Changes the training data to a subset, starting at position pos and length elements forward.
public void SubsetTrainData( uint pos, uint length )
Changes the training data to a subset, starting at position pos and length elements forward.
public void SubsetTrainData( uint pos, uint length )