public enum ActivationFunction
public enum ErrorFunction
public enum NetworkType
public enum StopFunction
public enum TrainingAlgorithm
Encapsulates a C FILE pointer
public FannFile( string filename, string mode )
Unique number used to identify source neuron
public uint FromNeuron { get, set }
Unique number used to identify source neuron
public uint FromNeuron { get, set }
Unique number used to identify source neuron
public uint FromNeuron { get, set }
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction( int layer, int neuron )
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction( int layer, int neuron )
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction( int layer, int neuron )
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public double GetActivationSteepness( int layer, int neuron )
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public int GetActivationSteepness( int layer, int neuron )
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public float GetActivationSteepness( int layer, int neuron )
Gets the training input data at the given position
public DataAccessor GetTrainInput( uint position )
Gets the training input data at the given position
public DataAccessor GetTrainInput( uint position )
Gets the training input data at the given position
public DataAccessor GetTrainInput( uint position )
Gets the training output data at the given position
public DataAccessor GetTrainOutput( uint position )
Gets the training output data at the given position
public DataAccessor GetTrainOutput( uint position )
Gets the training output data at the given position
public DataAccessor GetTrainOutput( uint position )
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights( TrainingData data )
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights( TrainingData data )
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights( TrainingData data )
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public double[][] Input { get }
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public int[][] Input { get }
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public float[][] Input { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public ArrayAccessor InputAccessor { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public ArrayAccessor InputAccessor { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public ArrayAccessor InputAccessor { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
public uint InputCount { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
public uint InputCount { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
public uint InputCount { get }
Get the number of neurons in each layer in the network.
public uint[] LayerArray { get }
Get the number of layers in the network
public uint LayerCount { get }
Get the number of layers in the network
public uint LayerCount { get }
Get the number of layers in the network
public uint LayerCount { get }
Get the number of neurons in each layer in the network.
public uint[] Layers { get }
Get the number of neurons in each layer in the network.
public uint[] Layers { get }
Get or set the learning momentum.
public float LearningMomentum { get, set }
Get or set the learning momentum.
public float LearningMomentum { get, set }
Get or set the learning momentum.
public float LearningMomentum { get, set }
Return or set the learning rate.
public float LearningRate { get, set }
Return or set the learning rate.
public float LearningRate { get, set }
Return or set the learning rate.
public float LearningRate { get, set }