Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z
F
 FANN C#AccessorEnumerator<T>
 FANN C#ActivationFunction enumerator, FANNCSharp
 FANN C#ArrayAccessor double
 FANN C#ArrayAccessor float
 FANN C#ArrayAccessor int
 FANN C#Connection double
 FANN C#Connection float
 FANN C#Connection int
 FANN C#DataAccessor double
 FANN C#DataAccessor float
 FANN C#DataAccessor int
 FANN C#ErrorFunction enumerator, FANNCSharp
 FANN C#FannFile class
 FANN C#IAccessor<T>Interface
 FANN C#NetworkType enumerator, FANNCSharp
 FANN C#NeuralNet Double
 FANN C#NeuralNet Fixed
 FANN C#NeuralNet Float
 FANN C#StopFunction enumerator, FANNCSharp
 FANN C#TrainingAlgorithm enumerator, FANNCSharp
 FANN C#TrainingData Double
 FANN C#TrainingData Fixed
 FANN C#TrainingData Float
 FANN_COS_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_ELLIOT, FANNCSharp.ActivationFunction
 FANN_ELLIOT_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_GAUSSIAN, FANNCSharp.ActivationFunction
 FANN_GAUSSIAN_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_LINEAR, FANNCSharp.ActivationFunction
 FANN_LINEAR_PIECE, FANNCSharp.ActivationFunction
 FANN_LINEAR_PIECE_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_SIGMOID, FANNCSharp.ActivationFunction
 FANN_SIGMOID_STEPWISE, FANNCSharp.ActivationFunction
 FANN_SIGMOID_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_SIN_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_THRESHOLD, FANNCSharp.ActivationFunction
 FANN_THRESHOLD_SYMMETRIC, FANNCSharp.ActivationFunction
 FANN_TRAIN_SARPROP, FANNCSharp.TrainingAlgorithm
 FANNCSharp.Connection
 FANNCSharp.Double.NeuralNet
 FANNCSharp.Double.TrainingData
 FANNCSharp.Fixed.Connection
 FANNCSharp.Fixed.NeuralNet
 FANNCSharp.Fixed.TrainingData
 FANNCSharp.Float.Connection
 FANNCSharp.Float.NeuralNet
 FANNCSharp.Float.TrainingData
 FannFile, FANNCSharp.FannFile
 FromNeuron
 Functions
 Functions and Properties
G
 Get, ArrayAccessor
 GetActivationFunction
 GetActivationSteepness
 GetEnumerator
 GetTrainInput
 GetTrainOutput
I
 IAccessor<T>
 InitWeights
 Input
 InputAccessor
 InputCount
 Item
L
 LAYER, FANNCSharp.NetworkType
 LayerArray, FANNCSharp.Float.NeuralNet
 LayerCount
 Layers
 LearningMomentum
 LearningRate
public enum ActivationFunction
public enum ErrorFunction
public enum NetworkType
The Fann Wrapper for C# provides Six main classes: FANNCSharp.Float::NeuralNet, FANNCSharp.Double::NeuralNet, FANNCSharp.Fixed::NeuralNet, FANNCSharp.Float::TrainingData, FANNCSharp.Double::TrainingData, FANNCSharp.Fixed::TrainingData.
The Fann Wrapper for C# provides Six main classes: FANNCSharp.Float::NeuralNet, FANNCSharp.Double::NeuralNet, FANNCSharp.Fixed::NeuralNet, FANNCSharp.Float::TrainingData, FANNCSharp.Double::TrainingData, FANNCSharp.Fixed::TrainingData.
The Fann Wrapper for C# provides Six main classes: FANNCSharp.Float::NeuralNet, FANNCSharp.Double::NeuralNet, FANNCSharp.Fixed::NeuralNet, FANNCSharp.Float::TrainingData, FANNCSharp.Double::TrainingData, FANNCSharp.Fixed::TrainingData.
public enum StopFunction
public enum TrainingAlgorithm
Periodical cosinus activation function.
Fast (sigmoid like) activation function defined by David Elliott
Fast (symmetric sigmoid like) activation function defined by David Elliott
Gaussian activation function.
Symmetric gaussian activation function.
Linear activation function.
Bounded linear activation function.
Bounded Linear activation function.
Sigmoid activation function.
Stepwise linear approximation to sigmoid.
Symmetric sigmoid activation function, aka.
Periodical sinus activation function.
Threshold activation function.
Threshold activation function.
THE SARPROP ALGORITHM: A SIMULATED ANNEALING ENHANCEMENT TO RESILIENT BACK PROPAGATION http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8197&rep=rep1&type=pdf
Describes a connection between two neurons and its weight
NeuralNet is the main neural network class used for both training and execution using doubles
TrainingData is used to create and manipulate training data used by the NeuralNet
Describes a connection between two neurons and its weight
NeuralNet is the main neural network class used for both training and execution using ints
TrainingData is used to create and manipulate training data used by the NeuralNet
Describes a connection between two neurons and its weight
NeuralNet is the main neural network class used for both training and execution using floats
TrainingData is used to create and manipulate training data used by the NeuralNet
public FannFile(string filename,
string mode)
Encapsulates a C FILE pointer
public uint FromNeuron { get, set }
Unique number used to identify source neuron
public uint FromNeuron { get, set }
Unique number used to identify source neuron
public uint FromNeuron { get, set }
Unique number used to identify source neuron
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public ActivationFunction GetActivationFunction(int layer,
int neuron)
Get the activation function for neuron number neuron in layer number layer, counting the input layer as layer 0.
public double GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public int GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
public float GetActivationSteepness(int layer,
int neuron)
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
Returns an enumerator that can enumerate over the collection of DataAccessors
Returns an enumerator that can enumerate over the collection of ints
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainInput(uint position)
Gets the training input data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
public DataAccessor GetTrainOutput(uint position)
Gets the training output data at the given position
An enumerable interface that provides a count of elements in the accessor and random, read-only access to its elements.
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public void InitWeights(TrainingData data)
Initialize the weights using Widrow + Nguyen’s algorithm.
public double[][] Input { get }
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public int[][] Input { get }
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public float[][] Input { get }
Grant access to the encapsulated data since many situations and applications creates the data from sources other than files or uses the training data for testing and related functions.
public ArrayAccessor InputAccessor { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public ArrayAccessor InputAccessor { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public ArrayAccessor InputAccessor { get }
An alternative to Input that returns an accessor object that grants access to to the input data with no copying.
public uint InputCount { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
public uint InputCount { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
public uint InputCount { get }
Get the number of input neurons.
public uint InputCount { get }
Returns the number of inputs in each of the training patterns in the TrainingData.
Provides access to the element at index
Each layer only has connections to the next layer
public uint[] LayerArray { get }
Get the number of neurons in each layer in the network.
public uint LayerCount { get }
Get the number of layers in the network
public uint LayerCount { get }
Get the number of layers in the network
public uint LayerCount { get }
Get the number of layers in the network
public uint[] Layers { get }
Get the number of neurons in each layer in the network.
public uint[] Layers { get }
Get the number of neurons in each layer in the network.
public float LearningMomentum { get, set }
Get or set the learning momentum.
public float LearningMomentum { get, set }
Get or set the learning momentum.
public float LearningMomentum { get, set }
Get or set the learning momentum.
public float LearningRate { get, set }
Return or set the learning rate.
public float LearningRate { get, set }
Return or set the learning rate.
public float LearningRate { get, set }
Return or set the learning rate.
Close