T | |
Test | |
TestData | |
TestDataParallel | |
ToNeuron | |
TotalConnections | |
TotalNeurons | |
Train | |
TRAIN_BATCH, FANNCSharp. | |
TRAIN_INCREMENTAL, FANNCSharp. | |
TRAIN_QUICKPROP, FANNCSharp. | |
TRAIN_RPROP, FANNCSharp. | |
TrainDataLength | |
TrainEpoch | |
TrainEpochBatchParallel | |
TrainEpochIncrementalMod | |
TrainEpochIrpropmParallel | |
TrainEpochQuickpropParallel | |
TrainEpochSarpropParallel | |
TrainErrorFunction | |
TrainingAlgorithm | |
TrainingAlgorithm.cs | |
TrainingCallback | |
TrainingData | |
TrainOnData | |
TrainOnFile | |
TrainStopFunction | |
W | |
Weight | |
WeightArray, FANNCSharp. | |
Weights |
Test with a set of inputs, and a set of desired outputs.
public double[] Test( double[] input, double[] desiredOutput )
Test with a set of inputs, and a set of desired outputs.
public int[] Test( int[] input, int[] desiredOutput )
Test with a set of inputs, and a set of desired outputs.
public float[] Test( float[] input, float[] desiredOutput )
Test a set of training data and calculates the MSE for the training data.
public float TestData( TrainingData data )
Test a set of training data and calculates the MSE for the training data.
public float TestData( TrainingData data )
Test a set of training data and calculates the MSE for the training data.
public float TestData( TrainingData data )
public float TestDataParallel( TrainingData data, uint threadNumb )
public float TestDataParallel( TrainingData data, uint threadNumb )
Unique number used to identify destination neuron
public uint ToNeuron { get, set }
Unique number used to identify destination neuron
public uint ToNeuron { get, set }
Unique number used to identify destination neuron
public uint ToNeuron { get, set }
Get the total number of connections in the entire network.
public uint TotalConnections { get }
Get the total number of connections in the entire network.
public uint TotalConnections { get }
Get the total number of connections in the entire network.
public uint TotalConnections { get }
Get the total number of neurons in the entire network.
public uint TotalNeurons { get }
Get the total number of neurons in the entire network.
public uint TotalNeurons { get }
Get the total number of neurons in the entire network.
public uint TotalNeurons { get }
Train one iteration with a set of inputs, and a set of desired outputs.
public void Train( double[] input, double[] desiredOutput )
Train one iteration with a set of inputs, and a set of desired outputs.
public void Train( float[] input, float[] desiredOutput )
Returns the number of training patterns in the TrainingData.
public uint TrainDataLength { get }
Returns the number of training patterns in the TrainingData.
public uint TrainDataLength { get }
Returns the number of training patterns in the TrainingData.
public uint TrainDataLength { get }
Train one epoch with a set of training data.
public float TrainEpoch( TrainingData data )
Train one epoch with a set of training data.
public float TrainEpoch( TrainingData data )
public float TrainEpochBatchParallel( TrainingData data, uint threadNumb )
public float TrainEpochBatchParallel( TrainingData data, uint threadNumb )
public float TrainEpochIncrementalMod( TrainingData data )
public float TrainEpochIncrementalMod( TrainingData data )
public float TrainEpochIrpropmParallel( TrainingData data, uint threadNumb )
public float TrainEpochIrpropmParallel( TrainingData data, uint threadNumb )
public float TrainEpochQuickpropParallel( TrainingData data, uint threadNumb )
public float TrainEpochQuickpropParallel( TrainingData data, uint threadNumb )
public float TrainEpochSarpropParallel( TrainingData data, uint threadNumb )
public float TrainEpochSarpropParallel( TrainingData data, uint threadNumb )
Sets or returns the error function used during training.
public ErrorFunction TrainErrorFunction { get, set }
Sets or returns the error function used during training.
public ErrorFunction TrainErrorFunction { get, set }
Sets or returns the error function used during training.
public ErrorFunction TrainErrorFunction { get, set }
Return or set the training algorithm as described by TrainingAlgorithm.
public TrainingAlgorithm TrainingAlgorithm { get, set }
Return or set the training algorithm as described by TrainingAlgorithm.
public TrainingAlgorithm TrainingAlgorithm { get, set }
Return or set the training algorithm as described by TrainingAlgorithm.
public TrainingAlgorithm TrainingAlgorithm { get, set }
This callback function can be called during training when using TrainOnData, TrainOnFile or CascadetrainOnData
public delegate int TrainingCallback( NeuralNet net, TrainingData data, uint maxEpochs, uint epochsBetweenReports, float desiredError, uint epochs, Object userData )
This callback function can be called during training when using TrainOnData, TrainOnFile or CascadetrainOnData
public delegate int TrainingCallback( NeuralNet net, TrainingData data, uint maxEpochs, uint epochsBetweenReports, float desiredError, uint epochs, Object userData )
Default constructor creates an empty training data.
public TrainingData()
Default constructor creates an empty training data.
public TrainingData()
Default constructor creates an empty training data.
public TrainingData()
Trains on an entire dataset, for a period of time.
public void TrainOnData( TrainingData data, uint maxEpochs, uint epochsBetweenReports, float desiredError )
Trains on an entire dataset, for a period of time.
public void TrainOnData( TrainingData data, uint maxEpochs, uint epochsBetweenReports, float desiredError )
Does the same as TrainOnData, but reads the training data directly from a file.
public void TrainOnFile( string filename, uint maxEpochs, uint epochsBetweenReports, float desiredError )
Does the same as TrainOnData, but reads the training data directly from a file.
public void TrainOnFile( string filename, uint maxEpochs, uint epochsBetweenReports, float desiredError )
Gets or sets the stop function used during training.
public StopFunction TrainStopFunction { get, set }
Gets or sets the stop function used during training.
public StopFunction TrainStopFunction { get, set }
Gets or sets the stop function used during training.
public StopFunction TrainStopFunction { get, set }
The numerical value of the weight
public double Weight { get, set }
The numerical value of the weight
public int Weight { get, set }
The numerical value of the weight
public float Weight { get, set }
Set connections in the network.
public Connection[] WeightArray { set }
Set connections in the network.
public Connection[] Weights { set }
Set connections in the network.
public Connection[] Weights { set }